skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Xing, Yangyang"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract With the well‐documented chemical and biological applications, piperidine and pyridine are among the most important N‐heterocycles, and a new synthetic strategy, especially one with an alternative bond‐forming design, is of general interest. Using the gold‐catalyzed intermolecular condensation of amine and diyne‐ene, we report herein the first example of enantioselective 1,2‐dihydropyridine synthesis through a formal [3+2+1] fashion (up to 95 % yield, up to 99 % e.e.). 
    more » « less
  2. Abstract Thioamides represent highly valuable isosteric in the strictest sense “single‐atom substitution” analogues of amides that have found broad applications in chemistry and biology. A long‐standing challenge is the direct transamidation of thioamides, a process which would convert one thioamide bond (R−C(S)−NR1R2) into another (R−C(S)−NR3N4). Herein, we report the first general method for the direct transamidation of thioamides by highly chemoselective N−C(S) transacylation. The method relies on site‐selective N‐tert‐butoxycarbonyl activation of 2° and 1° thioamides, resulting in ground‐state‐destabilization of thioamides, thus enabling to rationally manipulate nucleophilic addition to the thioamide bond. This method showcases a remarkably broad scope including late‐stage functionalization (>100 examples). We further present extensive DFT studies that provide insight into the chemoselectivity and provide guidelines for the development of transamidation methods of the thioamide bond. 
    more » « less